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SUMMARY

The magnetohydrodynamics flow and heat transfer in a thin liquid film over an unsteady elastic stretching
surface are analyzed by the homotopy analysis method. A more general surface temperature is taken into
consideration. The effects of various parameters in this study are discussed and presented graphically.
The good agreement between the analytic series solutions and the previous numerical results shows the
effectiveness of HAM to this problem. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid flows over a stretching sheet are commonly found in many manufacturing processes such as
polymer extrusion, wire and fiber coating, foodstuff processing, etc. The hydrodynamics of a flow
in a thin liquid film driven by an unsteady stretching surface was first considered by Wang [1].
This problem was then extended by Andersson et al. [2] to include the heat transfer analysis. Liu
and Andersson [3] considered a more general form of the prescribed temperature variation of the
stretching sheet than that considered by Andersson et al. [2]. Wang [4] presented analytic solutions
of the exact same problem of Andersson et al. [2]. Other extensions of Wang’s classical problem
took into consideration thermocapillary effects [5–7], magnetic effect [8] and the non-Newtonian
case [9–12].
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We believe that Wang [4] is probably the first to give exact analytical solutions based on the
homotopy analysis method (HAM) [13] for the flow and heat transfer in a thin liquid film driven
by an unsteady stretching surface. The HAM solutions for the non-Newtonian problem considered
by Andersson et al. [9] were presented by Wang and Pop [12]. The recent theoretical literatures on
HAM are given in [14–16] and the applications of HAM and its advantages among other methods
to some nonlinear differential equations have also been discussed [17–20]. Further effectiveness
of HAM to other fluid flow problems has been demonstrated by many authors (cf. [21–26]).

The purpose of the present work is to extend the model in [4] to include a magnetic field
and a more general surface temperature. The similarity transformation introduced by Wang [4]
transforms the extent of the independent variable into a finite range of 0–1. Analytic solutions
based on HAM are presented.

2. MATHEMATICAL MODEL

Consider the unsteady two-dimensional incompressible boundary layer equations of a Newtonian
fluid flow in a thin liquid film with heat transfer due to the stretching motion of a horizontal elastic
surface in the presence of an applied magnetic field B= B0/(1−�t)1/2 normal to the stretching
sheet:
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where u and v are the velocity components of the fluid in the x- and y-directions, t is the time, T
is the temperature, � is the kinematic viscosity, � is the electrical conductivity, � is the density and
� is the thermal diffusivity. Furthermore, U =bx/(1−�t) is the stretching surface velocity with b
and � are both positive constants. The temperature of the surface of the elastic sheet is assumed
to vary both along the sheet and with time in accordance with

Ts =To−Tref
dxr1

�
(1−�t)−r2

where To is the temperature at the slit, Tref is the constant reference temperature for all t<1/�, r1
and r2 are the positive power indices, d is the positive constant of proportionality with dimension
(length2−r1 time−1) and h(t) is the uniform thickness of the liquid film. The surface of the planar
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liquid film is assumed to be smooth and free of surface waves while the viscous shear stress and
the heat flux are assumed to be vanished at the adiabatic free surface.

The similarity transformations are given as

�=�x
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]1/2
f (	) (5)
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where (6) previously employed by Liu and Andersson [3], � is the dimensionless film thickness
and �(x, y) is the stream function defined by
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which satisfies the continuity equation (1). Consequently, Equations (1)–(4) are transformed to the
following nonlinear boundary value problem:
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where primes denote differentiation with respect to 	, Ma=�B0
2/�b is the parameter that reflects

electrically conducting fluid with magnetic field or the Hartman number, S=�/b is the dimension-
less measure of unsteadiness, Pr =�/� is the Prandtl number and the dimensionless film thickness
�=�2 is to be determined.

The physical quantities of interest are the skin friction coefficient and the local Nusselt number
which are defined as

C f = �w

�U 2/2
, Nux = xqw

�Tref

respectively, where the skin friction �w and heat transfer from the sheet, qw are given by

�w =


(
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)
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, qw =−�
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)
y=0
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with 
 and � being the dynamic viscosity and thermal conductivity, respectively. Hence, the
expressions for the skin friction and the rate of heat transfer for general magnetohydrodynamics
(MHD) flow within a thin film are written as

1

2
C f Re

1/2
x = 1

�
f ′′(0) (14)

Nux Re
−1/2
x = dxr1

��(1−�t)r2

′(0) (15)

where Rex =Ux/� is the local Reynolds number. In Wang [4], when d=b/2,r1=2 and r2= 3
2 in

(15), the expression of the heat flux becomes
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−3/2
x = 1
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′(0)

3. SOLUTION APPROACH

In HAM [13], it is assumed that f (	) and 
(	) can be expressed, using the set of base functions
{	m |m=0,1,2, . . .}, as
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where am and cm are constants. Under the rule of solution expression denoted by (16) and (17)
subject to the boundary condition (13), it is straightforward to choose

f0(	)=	+ 3S−6

4
	2+ 2−S

4
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as the initial guesses of f (	) and 
(	). The auxiliary linear operators L f =�3/�	3 and

L
 =�2/�	2 are chosen with the properties

L f [C1+C2	+C3	
2]=0 (20)

L
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where C1,C2 and C3 are constants of integration. From Equations (10) and (11), the nonlinear
operators are defined as
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where F(	;q) and �(	;q) are both unknown functions of 	 and q while � is a function dependent
on q . Here, prime denotes differentiation with respect to 	. Let h̄ f and h̄
 denote the non-zero
auxiliary parameters whereas H f and H
 are non-zero auxiliary functions, respectively. Then the
zero-order deformation equation can be constructed as

(1−q)Lf [F(	;q)− f0(	)]=qh̄ f H fNf [F(	;q),�(q)] (24)

(1−q)L
[�(	;q)−
0(	)]=qh̄
H
N
[F(	;q),�(	;q),�(q)] (25)

subject to the boundary conditions

F(0;q)=0, F ′(0;q)=1, �(0;q)=1 (26)

F(1;q)= 1
2 S, F ′′(1;q)=0, �′(1;q)=0 (27)

where q∈[0,1] is an embedding parameter. From (18)–(19), it is straightforward to show that
when q=0, the solutions of (24)–(27) are

F(	;0)= f0(	), �(	;0)=
0(	) (28)

Since h̄ f , h̄
 �= 0 and H f ,H
 �= 0 when q = 1, Equations (24)–(27) are equivalent to Equations
(10)–(13), respectively, provided

F(	;1)= f (	), �(	;1)=
(	), �(1)=� (29)

Thus, as q increases from 0 to 1, F(	;q) and �(	;q) vary from the initial guesses f0(	) and

0(	) to the solutions f (	) and 
(	) of Equations (10)–(13), respectively. Hence, does � from the
initial guess

�(0)=�0 (30)

to the time-scale parameter �. By the Maclaurin series and using (28) and (30), F(	;q),�(	;q)

and �(q) can be expanded as series of q ,
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Therefore, using (29) we have
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Differentiating Equations (24) and (25) m times with respect to q , then setting q=0 and finally
dividing them by m!, the so-called mth-order deformation equations are obtained as follows:
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The solutions of (40) and (41) can be expressed as

fm(	)=
∫ 	

0

∫ 	

0

∫ 	

0
h̄ f H f (s)R1,m(s)ds ds ds+�m fm−1+C1+C2	+C3	
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H
(s)R2,m(s)ds ds+�m
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Hence, the mth-order approximation of f (	),
(	) and � are given by
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where �n can be obtained by solving the equation fn+1(	) with respect to the boundary conditions
fn+1(1)=0 and f ′′

n+1(1)=0 of (43) ∀n�0 simultaneously.

4. RESULTS AND DISCUSSION

The algorithm for solving Equations (40)–(43) is coded in the computer algebra package Maple
where Maple’s built-in dsolve procedure for ordinary differential equations is employed. The
auxiliary functions H f and H
 in Equations (40) and (41) are set to be equal to 1 in all calculations
done in this paper. It is found that the solutions for (40)–(43) can be expressed by

fm(	)=
4m+3∑
k=2

am,k	
k, 
m(	)=

4m∑
k=1

bm,k	
k (51)

for m�1, where am,k and bm,k are coefficients of 	k in the series, which can be obtained recursively
for m=1,2,3, . . . using

a0,1=1, a0,2= 3S−6

4
, a0,3= 2−S

4
, b0,0=1 (52)

given by the initial guesses (18) and (19). Whenm=1, the following analytic solutions are obtained:

f1(	)=
7∑

k=2
a1,k	

k, 
1(	)=
4∑

k=1
b1,k	

k, �0= 105(2−S)

2R
(53)

where

a1,2= 3h̄ f (25S3−94S2+14S2Ma−56Ma(S−1)+76S+24)

16R
(54)

a1,3= −3h̄ f (12S3−44S2+7S2Ma−28Ma(S−1)+32S+16)

4R
(55)
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a1,4= 105h̄ f (3S3−10S2+2S2Ma−35Ma(S−1)+4S+8)

64R
(56)

a1,5= −21h̄ f (S3+2S2+2S2Ma−8Ma(S−1)−20S+24)

64R
(57)

a1,6= −21h̄ f (S3−6S2+12S−8)

64R
(58)

a1,7= 3h̄ f (S3−6S2+12S−8)

64R
(59)

b1,1= −105h̄
(r1+2r2)(S−2)S

4R
(60)

b1,2= 105h̄
(r1+r2S)(S−2)

4R
(61)

b1,3= 105h̄
r1(S−2)2

8R
(62)

b1,4= −105h̄
r1(S−2)2

32R
(63)

with R=36S2+21SMa−25S−7Ma+11.When Ma=0 is considered, the definition of R reduces
to R=36S2−25S+11 of Wang [4].

First we note that the HAM analytic solutions contain two non-zero auxiliary parameters h̄ f
and h̄
 which can be used to adjust and control the convergence of the series solutions. The proper
values of h̄ f and h̄
 can be determined by means of the so-called h̄-curve [13]. Figure 1 shows
the variations of �=�2 with h̄ f in the case S=0.8, r1=2, r2= 3

2 , Ma=0 and Ma=1 using
7th- and 10th-order of HAM approximation. The particular case Ma=0 recovers the results of

Figure 1. Variation of �=�2 with h̄ f using 7th- and 10th-order HAM approximation for the case S=0.8,
r1=2, r2= 3

2 when Ma=0 (Wang [4]) and Ma=1 (present study), respectively.
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Figure 2. The h̄ f -curves of f ′′(0) using 7th- and 10th-order HAM approximation for the case S=0.8,
r1=2, r2= 3

2 when Ma=0 and 1, respectively.

Figure 3. The h̄
-curves of 
′(0) using 7th- and 10th-order HAM approximation (h̄ f =−0.6) for the case
S=0.8, r1=2, r2= 3

2 , Pr =1 when Ma=0 and 1, respectively.

Wang [4]. It is seen that convergent results can be obtained by choosing a value for h̄ f in the range
−1.1�h̄ f �−0.2 for the case S=0.8, Ma=0 if 7th- and 10th-order HAM approximation are used.
For example, when h̄ f =−0.6, we obtain f ′′(0)=−2.68094 and �=4.63108 which agree with the
results of Wang [4] and Andersson et al. [2]. The h̄ f -curves of f ′′(0) are graphed in Figure 2 which
simply shows that when the auxiliary parameter h̄ f is properly chosen between −1.3 and −0.3 for
r1=2, r2= 3

2 , S=0.8, Pr =1, Ma=0 and Ma=1, the rate and region for the convergent values
of f ′′(0) can easily be attained. The appropriate choice of the auxiliary parameter h̄
 to maintain
the convergent rate and region of 
′(0) is acquired in the range −0.45<h̄
<−0.35 when Ma=0
and −0.60<h̄
<−0.35 when Ma=1 as presented by the h̄
-curves in Figure 3 for r1=2, r2= 3

2 ,
S=0.8, h̄ f =−0.6 and Pr =1. Based on Figures 1–3, HAM 10th-order approximation provides
slightly longer range for the convergence-control parameter h̄ [15] rather than the 7th-order HAM
approximation. Table I presents the effect of the unsteadiness parameter S on � and f ′′(0) for
the case Ma=0. Comparisons of the values of �=�1/2, f ′(1), f ′′(1) and f ′′(0) when r1=2,
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Table I. Comparison of the dimensionless film thickness, �, and the surface velocity
gradient, f ′′(0), using 10th-order HAM approximation (h̄ f =−0.6), when Ma=0,

r1=2, r2= 3
2 and for several values of S.

Present work Wang [4]
S � f ′′(0) f ′′(0)/� � f ′′(0) f ′′(0)/�
0.8 2.15199 −2.68094 −1.245796 2.15199 −2.68094 −1.245796
1.0 1.54362 −1.97238 −1.277763 1.54362 −1.97238 −1.277763
1.2 1.12778 −1.44263 −1.279177 1.12778 −1.44263 −1.279177
1.4 0.821032 −1.012780 −1.233545 0.821032 −1.012784 −1.233550
1.6 0.576173 −0.642397 −1.114938 0.576173 −0.642397 −1.114938
1.8 0.356389 −0.309137 −0.867415 0.356389 −0.309137 −0.867415

Table II. Comparison of the free surface temperature, 
(1), and heat flux from the liquid
film to the stretching sheet, −
′(0), using 10th-order HAM approximation, when Ma=0,

r1=2, r2= 3
2 and for several values of Pr .

Present work Wang [4]
Pr 
(1) −
′(0) −
′(0)/� 
(1) −
′(0) −
′(0)/�
S=0.8, h̄ f =−0.6 and �=2.15199
0.01 0.960480 0.090474 0.042042 0.960480 0.090474 0.042042
0.10 0.692533 0.756162 0.351378 0.692533 0.756162 0.351378
1.00 0.097881 3.593268 1.669742 0.097884 3.595970 1.670998
2.00 0.024945 5.226744 2.428796 0.024941 5.244150 2.436884
3.00 0.008786 6.382744 2.965973 0.008785 6.514440 3.027170

S=1.2, h̄ f =−1.0 and �=1.12778
0.01 0.982331 0.037734 0.033459 0.982331 0.037734 0.033459
0.10 0.843622 0.343931 0.304963 0.843622 0.343931 0.304963
1.00 0.286712 1.999224 1.772707 0.286717 1.999590 1.773032
2.00 0.128031 2.975320 2.638210 0.128124 2.975450 2.638324
3.00 0.067423 3.693560 3.275071 0.067658 3.698830 3.279744

r2= 3
2 and several values of Ma are shown in Table III. The method used in Abel et al. [8] is

the fourth-order Runge–Kutta with shooting. The results in Tables I–III confirm the validity of
our codes.

Further numerical results of the skin friction and heat transfer values for MHD thin film flow
are tabulated in Tables IV–VI when the unsteadiness parameter S, the Hartman number Ma and
the auxiliary parameter h̄ f are varied, respectively. It can be summarized that when S (Table IV)
or Ma (Table V) increases, the film thickness �=�1/2 and the wall heat flux −
′(0) decrease,
whereas the skin friction f ′′(0) and the free temperature 
(1) values escalate. Based on Table VI,
the convergent values of �=�1/2 and f ′′(0) can be generated when the auxiliary parameter h̄ f is
between −0.4 and −1.2 for both cases of r1=2, r2= 3

2 , S=1.0, Pr =1, h̄
 =−0.5 and r1=r2=1,
S=0.8, Pr =1, h̄
 =−0.4. Variations of the wall heat flux −
′(0) and the free surface temperature
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Table III. Comparison of the values of �=�1/2, f ′(1), f ′′(1) and f ′′(0) when r1=2, r2= 3
2

and the Hartman number Ma is varied.

Present work Abel et al. [8]
Ma � f ′′(0) f ′(1) f ′′(1) � f ′(1) f ′′(1)
S=0.8 (10th-order of HAM, h̄ f =−0.6)
0 2.151994 −2.680944 0.187840 0.000000 2.151990 0.187840 0.000000
1 1.616881 −2.569836 0.179716 0.000000 1.616880 0.179716 0.000000
2 1.350881 −2.526794 0.176487 0.000000 1.350880 0.176488 0.000000
3 1.184198 −2.503884 0.174751 0.000000 1.184197 0.174751 0.000000
4 1.067176 −2.489651 0.173665 0.000000 1.067175 0.173665 0.000000
5 0.979193 −2.479948 0.172922 0.000000 0.979192 0.172922 0.000000
6 0.909924 −2.472908 0.172382 0.000000 0.909925 0.172381 0.000000
7 0.853552 −2.467566 0.171971 0.000000 0.853552 0.171971 0.000000
8 0.806513 −2.463375 0.171648 0.000000 0.806512 0.171648 0.000000

S=1.2 (10th-order of HAM, h̄ f =−1.0)
0 1.127781 −1.442625 0.427547 0.000000 1.127780 0.427548 0.000000
1 0.903879 −1.417580 0.425050 0.000000 0.903878 0.425050 0.000000
2 0.775796 −1.405663 0.423848 0.000000 0.775795 0.423849 0.000000
3 0.690239 −1.398695 0.423141 0.000000 0.690238 0.423142 0.000000
4 0.627910 −1.394122 0.422676 0.000000 0.627910 0.422676 0.000000
5 0.579900 −1.390891 0.422346 0.000000 0.579900 0.422346 0.000000
6 0.541450 −1.388486 0.422100 0.000000 0.541450 0.422100 0.000000
7 0.509757 −1.386626 0.421910 0.000000 0.509757 0.421909 0.000000
8 0.483049 −1.385146 0.421758 0.000000 0.483048 0.421759 0.000000

Table IV. Variation of �=�1/2, f ′′(0), 
(1) and −
′(0) using 10th-order HAM approximation
when Ma=1, Pr =1 and S is varied.

S � f ′′(0) 
(1) −
′(0)

r1=2, r2= 3
2 , h̄ f =−0.5, h̄
 =−0.5

0.6 2.264512 −3.528709 0.133532 3.459299
0.8 1.616884 −2.569610 0.214130 2.587477
1.0 1.200886 −1.917629 0.306767 1.983810
1.2 0.903880 −1.417470 0.412687 1.510059
1.4 0.674623 −1.002432 0.533097 1.103694

r1=r2=1, h̄ f =−0.6, h̄
 =−0.4
0.6 2.264602 −3.529004 0.236345 2.531606
0.8 1.616881 −2.569836 0.341740 1.875512
1.0 1.200884 −1.917781 0.447995 1.415288
1.2 0.903879 −1.417570 0.555961 1.053417
1.4 0.674623 −1.002490 0.665552 0.747922

values 
(1) with respect to Pr are listed in Table VII. Based on Table VII, it is noted that higher
Prandtl number Pr decreases 
(1), but increases −
′(0) for the cases of �=1.200886, r1=2,
r2= 3

2 , S=1.0, h̄ f = h̄
 =−0.5 and �=1.616881, r1=r2=1, S=0.8, h̄ f =−0.6, h̄
 =−0.4.
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Table V. Variation of �=�1/2, f ′′(0), 
(1) and −
′(0) using 10th-order HAM
approximation when Pr =1 and Ma is varied.

Ma � f ′′(0) 
(1) −
′(0)

r1=2, r2= 3
2 , S=1, h̄ f =−0.5, h̄
 =−0.5

0.0 1.543619 −1.972205 0.180688 2.675102
0.5 1.340293 −1.938218 0.247614 2.268944
1.0 1.200886 −1.917629 0.306767 1.983810
2.0 1.017141 −1.893898 0.402709 1.600785
3.0 0.898195 −1.880614 0.476204 1.349512
5.0 0.748439 −1.866222 0.580365 1.033307
10.0 0.563534 −1.852052 0.720329 0.656777
50.0 0.266723 −1.837647 0.924012 0.169523

r1=r2=1, S=0.8, h̄ f =−0.6, h̄
 =−0.4
0.0 2.151994 −2.680944 0.187817 2.677204
0.5 1.827355 −2.609606 0.271666 2.194358
1.0 1.616881 −2.569836 0.341740 1.875512
2.0 1.350881 −2.526794 0.449771 1.467569
3.0 1.184198 −2.503884 0.528172 1.211742
5.0 0.979193 −2.479948 0.633472 0.902848
10.0 0.731882 −2.457220 0.765332 0.554407
50.0 0.343901 −2.434916 0.939730 0.136412

Table VI. Variation of �=�1/2, f ′′(0), 
(1) and −
′(0) using 10th-order HAM
approximation when Ma=1, Pr =1 and h̄ f is varied.

h̄ f � f ′′(0) 
(1) −
′(0)

r1=2, r2=3/2, S=1, h̄
 =−0.5
−0.2 1.201564 −1.884224 0.306559 1.987328
−0.4 1.200909 −1.916515 0.306766 1.983980
−0.5 1.200886 −1.917629 0.306767 1.983810
−0.6 1.200884 −1.917781 0.306765 1.983775
−0.8 1.200884 −1.917796 0.306765 1.983764
−1.0 1.200884 −1.917796 0.306767 1.983759
−1.2 1.200880 −1.917893 0.306755 1.983816

r1=r2=1, S=0.8, h̄
 =−0.4
−0.2 1.618585 −2.516008 0.341146 1.882344
−0.4 1.616920 −2.568005 0.341796 1.875913
−0.5 1.616884 −2.569610 0.341758 1.875600
−0.6 1.616881 −2.569836 0.341740 1.875512
−0.8 1.616881 −2.569858 0.341731 1.875458
−1.0 1.616859 −2.569784 0.341684 1.875502
−1.2 1.617971 −2.566599 0.343189 1.872479

The velocity and temperature profiles are presented in Figures 4 and 5 for several values of S
and Ma, respectively. From Figure 4, it can be said that increasing S causes a rise in the flow
velocity and temperature. In Figure 5, it is shown that the effect of Ma is small on the velocity,
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Table VII. Variation of 
(1) and −
′(0) using 10th-order HAM
approximation when Ma=1 and Pr is varied.

S r1 r2 Pr 
(1) −
′(0)

1 2 3
2 (h̄ f =−0.5, h̄
 =−0.5)

0.70 0.409838 1.574313
1.00 0.306767 1.983810
2.00 0.138760 2.937627
3.00 0.068549 3.520466

0.8 1 1 (h̄ f =−0.6, h̄
 =−0.4)
0.70 0.448860 1.471605
1.00 0.341740 1.875512
2.00 0.155169 2.782922
3.00 0.069292 3.299425

Figure 4. Effects of S on the velocity and temperature profiles using 10th-order HAM approximation
(h̄ f =−0.6, h̄
 =−0.4) for the case Ma=1, Pr =1, r1=1=r2=1.
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Figure 5. Effects of Ma on the velocity and temperature profiles using 10th-order HAM approximation
(h̄ f =−0.6, h̄
 =−0.4) for the case S=0.8, Pr =1, r1=1=r2=1.

Figure 6. Effects of Pr on the temperature profiles using 10th-order HAM approximation (h̄ f =−0.6,
h̄
 =−0.4) for the case S=0.8, Ma=1, r1=1=r2=1.
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Figure 7. Effects of (a) r1 with r2=0 and (b) r2 with r1=0 on the temperature profiles using 10th-order
HAM approximation (h̄ f =−0.6, h̄
 =−0.4) for the case S=0.8, Ma=1 and Pr=1.

whereas higher values of Ma increase the temperature. Increasing the Prandtl number will speed
up the cooling as depicted in Figure 6. Moreover, the effects of the power indices r1 and r2 on
the temperature profiles are presented for S=0.8, Ma=1, h̄ f =−0.6, h̄
 =−0.4 and Pr =1 in
Figure 7.

5. CONCLUDING REMARKS

In this study, the MHD flow and heat transfer within a thin liquid film due to an unsteady elastic
stretching sheet has been analyzed successfully using the HAM. The analytic and purely numerical
solutions agree very well. Based on the cases investigated, the magnetic field parameter Ma has
a small effect on the velocity, but big effect on the temperature. The power indices r1 (r2) have
been shown to have the effect of decreasing the temperature when r2 (r1) is absence. Generally,
higher approximation order of HAM increases the measure of convergence in the results by means
of the properly chosen auxiliary parameter h̄.
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